Sequence to Sequence Autoencoders for Unsupervised Representation Learning from Audio

نویسندگان

  • Shahin Amiriparian
  • Michael Freitag
  • Nicholas Cummins
  • Björn Schuller
چکیده

This paper describes our contribution to the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE 2017). We propose a system for this task using a recurrent sequence to sequence autoencoder for unsupervised representation learning from raw audio files. First, we extract mel-spectrograms from the raw audio files. Second, we train a recurrent sequence to sequence autoencoder on these spectrograms, that are considered as time-dependent frequency vectors. Then, we extract, from a fully connected layer between the decoder and encoder units, the learnt representations of spectrograms as the feature vectors for the corresponding audio instances. Finally, we train a multilayer perceptron neural network on these feature vectors to predict the class labels. In comparison to the baseline, the accuracy is increased from 74.8% to 88.0% on the development set, and from 61.0% to 67.5% on the test set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Learning of Sequence Representations by Autoencoders

Traditional machine learning models have problems with handling sequence data, because the lengths of sequences may vary between samples. In this paper, we present an unsupervised learning model for sequence data, called the Integrated Sequence Autoencoder (ISA), to learn a fixed-length vectorial representation by minimizing the reconstruction error. Specifically, we propose to integrate two cl...

متن کامل

Audio Word2Vec: Unsupervised Learning of Audio Segment Representations Using Sequence-to-Sequence Autoencoder

The vector representations of fixed dimensionality for words (in text) offered by Word2Vec have been shown to be very useful in many application scenarios, in particular due to the semantic information they carry. This paper proposes a parallel version, the Audio Word2Vec. It offers the vector representations of fixed dimensionality for variable-length audio segments. These vector representatio...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

auDeep: Unsupervised Learning of Representations from Audio with Deep Recurrent Neural Networks

auDeep is a Python toolkit for deep unsupervised representation learning from acoustic data. It is based on a recurrent sequence to sequence autoencoder approach which can learn representations of time series data by taking into account their temporal dynamics. We provide an extensive command line interface in addition to a Python API for users and developers, both of which are comprehensively ...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017